
One-Way Puzzles and
the Foundations of

Quantum Cryptography
Eli Goldin and Kabir Tomer

A question which we all know the answer to

What is the minimal primitive for classical cryptography

Minimal Cryptographic Primitive?

Growing up we are told that the answer is one-way functions

Minimal Cryptographic Primitive?

But why do we say that one-way functions are minimal?

Minimal Cryptographic Primitive?

The primary reason is that one-way functions are implied by basically all classical cryptography

Minimal Cryptographic Primitive?

Which is to say that that OWFs are in some sense “at sea level” for classical crypto

In the sense that they are implied by almost all classical crypto

Now, that is also true for other primitives which are equivalent to OWFs like commitments

Or PRGs

But what sets one-way functions apart is that they are also very easy to build. They seem to very
naturally capture the kind of hardness inherent in cryptographic constructions

Which lets us conclude that one way functions are the perfect minimal assumption on which to
base cryptography

The problem with this claim though, as William kretschmer showed, this is only true for classical
cryptography

If we think of one way functions as “sea level”, then

There are quantum cryptographic primitives which live “underwater”

Specifically, William and collaborators showed that certain kinds of quantum cryptography can be
built from one way functions but do not in turn imply one-way functions

In fact, relative to certain oracles, these primitives can exist even if P=NP!

So, if quantum cryptography can be built from assumptions much weaker than one-way functions,
this begs the question

What *now* is the minimal assumption required for quantum cryptography? Or in other words, is
there… This is the question that Mark talked about in the other room two years ago…

2 years ago in the other room

What *now* is the minimal assumption required for quantum cryptography? Or in other words, is
there… This is the question that Mark talked about in the other room two years ago…

2 years ago in the other room

And he gave a list of properties that were desirable for minimality

2 years ago in the other room

And compared all the leading candidates for minimal assumption

2 years ago in the other room

Along various axes,

2 years ago in the other room

And basically concluded that none of them really fit the description

2 years ago in the other room

Two years later though, circa 2025, the picture is very different.

Because we have had these leading candidates for a while, and put them head to head, and after
the dust has settled somewhat

It seems pretty clear that a primitive called an EFI pair is the minimal primitive for quantum
cryptography.

Circa 2025

An EFI pair is just a pair of efficient distributions over quantum states

EFI

EFI

That are statistically far, but comp indistinguishable

EFI

EFI pairs are pretty powerful, in that they can be used to build quantum commitments, which in
turn can be used to build quantum MPC

So how did we get here, So what has changed in these two years? why do we say that EFI pairs are
minimal.

How did we get here?

Well, we found out that EFI pairs are implied by almost everything in quantum cryptography,
which we cannot really say about any of the other candidates. And it turns out that really that is
the most important requirement for minimality.

How did we get here?

There is a catch of sorts though, which is that it is not really easy to build EFI pairs from most
quantum crypto primitives, especially from less structured primitives.

How did we get here?

So even though they seem to be minimal, they don’t seem to capture cryptographic hardness as
naturally as OWFs do. The main reason for this is that they are a decision primitive, and a lot of
the hardness in quantum crypto is search hardness

How did we get here?

So this talk aims to answer two questions:
First, how did we get here. How do we know that EFI pairs are implied by everything?
And secondly, is there a more natural way to understand the hardness in quantum cryptography

How do we know that EFI are implied by
“everything”?

So this talk aims to answer two questions:
First, how did we get here. How do we know that EFI pairs are implied by everything?
And secondly, is there a more natural way to understand the hardness in quantum cryptography

How do we know that EFI are implied by
“everything”?

Is there a natural way to capture hardness?

We answer these questions via a different cryptographic primitive called a one-way puzzle.

One-way puzzles

A one-way puzzle consists of an efficient quantum sampler that outputs a hard problem, which we
call the puzzle, along with the key or the solution.

One-way puzzles

The sampler is a quantum machine, but the puzzle and its solution are both classical strings

Additionally, there is a verification process that checks whether puzzle and solution pairs are valid,
where we have the guarantee that honestly generated pairs are always valid

One-way puzzles

This verifier, however, is crucially allowed to be inefficient!

One-way puzzles

The security we require from one-way puzzles is that for honestly sampled puzzles, it should be
computationally hard to find a valid key.

One-way puzzles turn out to be really useful in understanding quantum hardness.

This is because, somewhat surprisingly, one-way puzzles are implied by most quantum
cryptography

And one-way puzzles, in turn, can be used to build EFI pairs

Furthermore, while the construction of EFI pairs from one-way puzzles is complicated, We have
developed techniques that mean constructing one-way puzzles from other cryptographic
primitives tends to be very simple.

The focus of the rest of this talk will be on these different techniques we know can be used to
build one-way puzzles, which we will think of as different recipes we can use to capture differing
types of quantum hardness, and most primitives that you can think of will fall in one of these
categories. Along the way we will see a number of important applications.

Essentially all constructions of one-way puzzles fall into one of three distinct recipes, and Eli is
going to give an overview of each of them.

How to build?

As a quick preview, we will give recipes for three different kinds of cryptographic primitives.
Classical secret, quantum output. Classical communication. And quantum input, classical output.
This covers most cryptographic primitives you could think of, and typically when you encounter
an object which falls into one of these categories, it will be easy to plug in the corresponding
recipe and build one-way puzzles (and thus non-trivial quantum cryptography)

Recipes Overview

The first recipe follows along a technique known as shadow tomography. This technique applies
to any cryptographic primitive with a classical input/secret and quantum output. In particular, the
quantum output needs to consist of many copies of the same pure state (if you don’t know what
that means, don’t worry about it).

Recipe #1: Shadow Tomography

There are a number of examples of such primitives which have been previously studied. One-way
state generators, a “quantum output” version of a one-way function, fall under this umbrella. As
do pseudorandom states and unitaries, as well as encryption schemes where the ciphertext is
allowed to be quantum (under a suitable definition).

Recipe #1: Shadow Tomography

To visualize this, we will begin with some problem where it is easy to go from a classical key k to
many copies of the quantum state phi_k, but it is hard to go back. We want to then construct a
protocol where it is easy to go from a classical key k to some other _classical_ string S_k, but hard
to go back.

Recipe #1: Shadow Tomography

And for now let’s just assume that this map is suitably “injective” (or statistically binding),
although this isn’t actually necessary. That is, phi_k should commit to the string k.

Recipe #1: Shadow Tomography

One very obvious approach to doing this would be to have S_k be a classical description of phi_k.

Recipe #1: Shadow Tomography

But note that quantum states may in general have an exponential size classical description. In
particular, there is no general efficient algorithm that can take many copies of a quantum state and
produce an invertible classical description.

Any map from quantum states to classical strings must delete some information.

Recipe #1: Shadow Tomography

And this is where shadow tomography comes in. Classical shadow tomography is a procedure
which maps a quantum states to a classical string where some statistical information _of your
choice_ is preserved.

Recipe #1: Shadow Tomography

In particular, from phi_k, we can use classical shadow tomography to construct a classical shadow
S_k which ALSO commits information theoretically to k.

That is, this technique (which we will not detail how it works) gives an efficient algorithm
producing a classical shadow S_k from phi_k, as well as an inefficient map back to k from S_k.

Recipe #1: Shadow Tomography

This string S_k is called a classical shadow.

Recipe #1: Shadow Tomography

So, to build a one-way puzzle from a classical secret, quantum output problem, the recipe goes as
follows.
The key will be the classical secret k.
The puzzle will be the classical shadow S_k produced from phi_k.

Recipe #1: Shadow Tomography

The inefficient verifier takes in a puzzle S_k and a key k’. It applies the inefficient map sending
S_k back to k, and then compares k and k’. This is inefficient, but that is fine for our definition!

Recipe #1: Shadow Tomography

Since it is hard to go from |phi_k> back to k, and since we can easily build S_k from |phi_k>

Recipe #1: Shadow Tomography

It must also be hard to go from S_k back to k (that is, solve the puzzle!)

And so one-way state generators and friends can all be used to build one-way puzzles

Recipe #1: Shadow Tomography

The second recipe is a technique sometimes known as “universal extrapolation”.

Classically, if one-way functions do not exist, then there exists a “universal extrapolator” Ext
which does the following. Given any classically samplable, correlated distributions X and Y. The
distribution (X,Y) is statistically close to (X, Ext(X)). That is, the universal extrapolator allows one
to sample Y conditioned on the value of X for a randomly drawn x.

Recipe #2: Universal Extrapolation

From some perspective, this is actually the most common way to build one-way functions. Key
exchange, commitments, and pretty much all cryptographic primitives are all easily broken by
universal extrapolation, even if it is not immediately obvious how to build a one-way function.

Recipe #2: Universal Extrapolation

The hardness of universal extrapolation is essentially something called a “distributional one-way
function”

Recipe #2: Universal Extrapolation

A second, very related task is something we call universal approximation (or probability
estimation). If one-way functions don’t exist, then for all classically samplable distributions D,
there exists an approximator Approx. For a randomly chosen x, Approx(x) will give a good
multiplicative estimate of the probability that D outputs x.

So in short, no one way functions means we can do universal extrapolation and approximation. In
other words, average-case conditional sampling and average-case estimation of output
probabilities.

Recipe #2: Universal Extrapolation

And in fact the converse also holds.

Recipe #2: Universal Extrapolation

It turns out, that both of these results also hold for one-way puzzles in the quantum setting! The
non-existence of one-way puzzles is equivalent to the ability to do universal extrapolation and
approximation on _quantumly_ samplable distributions over classical strings. That is, the
theorems are exactly the same, but now universal extrapolation works even when the sampler is
quantum.

Recipe #2: Universal Extrapolation

It turns out, that both of these results also hold for one-way puzzles in the quantum setting! The
non-existence of one-way puzzles is equivalent to the ability to do universal extrapolation and
approximation on _quantumly_ samplable distributions over classical strings. That is, the
theorems are exactly the same, but now universal extrapolation works even when the sampler is
quantum.

Recipe #2: Universal Extrapolation

So how can we use this to build one-way puzzles? As an example, I will talk about a primitive you
all know and love, key exchange, where classical Alice and classical Bob communicate classically,
and then agree on a secret bit b. We know that we can build one-way functions from classical key
exchange.

Recipe #2: Universal Extrapolation

But what happens when we restrict ourselves to the “quantum computation and classical
communication setting”? That is, while we will QAlice and Qob to be quantum, but we require
them to communicate classically.

Recipe #2: Universal Extrapolation

It turns out that so-called QCCC key exchange is very easy to break using universal extrapolation.
We will simply let X be the transcript, and Y will be the agreed bit b.

Recipe #2: Universal Extrapolation

Now, universal extrapolation of the transcript will give the exact distribution of the output bit b!

Recipe #2: Universal Extrapolation

And so the universal extrapolation we get from no one-way puzzles breaks key exchange! And so
key exchange can be used to build one-way puzzles.

Recipe #2: Universal Extrapolation

So what kinds of primitives will this approach work for? Really it works for practically _any_
cryptography with classical communication and quantum parties.

Recipe #2: Universal Extrapolation

This is in fact much more powerful than just “QCCC versions of normal cryptography”, and it
has a bunch of relatively surprising applications.

Recipe #2: Universal Extrapolation

One direct example is that this can be used to show that the existence of one-way puzzles is
equivalent to the hardness of some metacomplexity problem on _quantumly samplable_
distributions.

Recipe #2: Universal Extrapolation

A very surprising other example of this recipe is that it is used to show that one-way puzzles are
equivalent to some notion of quantum advantage! That is, one-way puzzles (with classical security)
exist if and only if there exists proofs of quantumness with inefficient verification!

Recipe #2: Universal Extrapolation

This approach also lets us give concrete candidate constructions of one-way puzzles (and thus EFI
and quantum crypto more generally) from quantum advantage style assumptions.

Recipe #2: Universal Extrapolation

Finally, and maybe the most obvious application, we get that essentially all cryptography with
classical communication can be used to construct one-way puzzles.

Recipe #2: Universal Extrapolation

One final advantage of this equivalence is that it allows us to weaken the definition of one-way
puzzles to a “distributional” notion. Recall that security of a one-way puzzle originally said that an
adversary cannot find a key that verifies.

Recipe #2: Universal Extrapolation

But we could consider a distributional notion, which says that an adversary cannot sample from
the conditional distribution on keys for a given puzzle. That is, the distribution of puzzles
followed by adversary’s keys should be statistically far from the honest puzzle, key distribution.

Recipe #2: Universal Extrapolation

We call such a primitive a “distributional one-way puzzles” and it is essentially a hard instance of
universal extrapolation. And so we have that dist owpz exist if and only if owpz exist.

Recipe #2: Universal Extrapolation

The nice thing about this alternative definition of one-way puzzles is that there we don’t need to
deal about the weirdness of having an inefficient verifier, since there is no verifier in the first place!

Recipe #2: Universal Extrapolation

Our final recipe for constructing one-way puzzles will go through something called “state puzzles”
It will work for any cryptographic primitive with a classical output, even if the secret is quantum.

Recipe #3: State Puzzles

This is probably the most general of the techniques, but a few examples of these are quantum
money, encryption with a classical public key and quantum secret key, as well as 2 round key
exchange with unauthenticated quantum communication.

Recipe #3: State Puzzles

This technique will build upon the previous one. In particular, we will begin with a primitive that
maps a quantum state to a classical key such that it is easy to find the key from the state (or sample
both together), but it is hard to recover the state from the key.

Recipe #3: State Puzzles

We will then want to build a hard instance of universal approximation. That is, some distribution
D such that given a sample x, it is hard to approximate the probability that D outputs x.

Recipe #3: State Puzzles

In the worst-case setting, it is known how to do this using state synthesis techniques.

And in fact these techniques also translate to the average-case setting (with some work).

Recipe #3: State Puzzles

For ease of use, we abstract out this recipe into a primitive dubbed by Kabir as a state puzzle. A
state puzzle is essentially a one way puzzle with a _quantum_ key.

Recipe #3: State Puzzles

Furthermore, we relax security to be the simplest possible thing. We simply require that no
adversary on input a puzzle s can recover the _actual_ key state |phi_s>

Recipe #3: State Puzzles

Note that this is actually a falsifiable definition! Given an adversary, you can test whether it works
yourself by comparing the adversary output to your stored key.

Recipe #3: State Puzzles

In a recent work, KT25 showed that state puzzles exist if and only if one-way puzzles exist, exactly
by going through universal approximation

Recipe #3: State Puzzles

In a recent work, KT25 showed that state puzzles exist if and only if one-way puzzles exist, exactly
by going through universal approximation

Recipe #3: State Puzzles

I will show a kind of cool, surprising, and very easy application. Note that if you have just a
random string, this is cryptographically useless. There is no way to information theoretically build
one-way functions. But, if you have a single random state, then it is possible to build one-way
puzzles!

Recipe #3: State Puzzles

In particular, let |phi> be a random state on two registers A and B.

Recipe #3: State Puzzles

The state puzzle will act as follows. It will measure register B in the standard basis producing a
string s as well as a residual state |phi_s> on register A.

Recipe #3: State Puzzles

Then, it will set the puzzle to be s, and the key to be phi_s.

Recipe #3: State Puzzles

It is information-theoretically impossible to construct phi_s from s and phi in polynomial time,
and so this is a state puzzle!

Recipe #3: State Puzzles

And so this gives a construction of state-puzzles (and thus one-way puzzles) from just a single
random state floating in the air.

Recipe #3: State Puzzles

And this technique also works for a bunch of important cryptographic primitives (like quantum
money or 2-round key distribution)

Recipe #3: State Puzzles

To recap, we gave three recipes for three different types of protocols.
The first recipe is shadow tomography, which works when there are classical secrets and (many)
quantum outputs.

The second is universal extrapolation/approximation, which works for anything with classical
communication.

And the last is state puzzles, which works when there are quantum secrets and classical outputs.

Recipes Recap

Note that all three of these techniques are solvable in the worst-case by an algorithm in the
counting complexity class #P (a complete problem is counting the number of satisfying
assignments of a SAT formulat)

Recipes Recap

This leads to the following heuristic, for which I know no counterexamples. If a cryptographic
object can be broken in P^#P, then it implies one-way puzzles.

Recipes Recap

As a final view, we can divide crypto up into three categories, crypto broken in NP, broken in #P,
and crypto we just don’t know how to break.

Central Primitives

Each of these worlds has a minimal primitive, OWF for NP, OWPz for #P, and EFI for the rest

Central Primitives

Open Questions

The first, glaring open problem is how OWPuzz relate to EFI. We know that one-way puzzles are
broken by #P oracles, and we don’t know of any classical oracle that can break EFI pairs

Connections to EFI

Connections to EFI

And yet, we have no separations between EFI pairs and one-way puzzles. The best we have is a
separation where we are restricted to making a single query to the oracle, which doesn’t actually
give a black box separation!

EFI pairs are the main candidate for showing that the unitary synthesis problem is hard relative to
classical oracles, and a prerequisite for that is to separate from one way puzzles.

The other possibility is that we can actually construct one-way puzzles from EFI, which would
really simplify the picture of quantum minimality, and actually such a construction wouldn’t even
contradict the unitary synthesis conjecture.

Connections to EFI

An easier thing to try is building one-way puzzles from single copy PRS, which seem stronger than
EFI, but we don’t know how to build anything useful from them, other than EFI

Connections to EFI

The second question is about using one-way puzzles. OWPuzz are defined with the double edged
sword of NO EFF VER.

Using one-way puzzles

This is good because it lets us build them from very very weak assumptions, maybe even as weak
as the worst case quantum hardness of #P.

Using one-way puzzles

The downside is this makes it harder to build other primitives from it

Using one-way puzzles

The known results are that one-way puzzles imply the hardness of approximating K complexity,
they imply IV-PoQ, they imply EFI, and they imply everything else implied by EFI

Using one-way puzzles

A natural thing to try to build from OWP is a classical communication cryptography

Using one-way puzzles

Specifically, we can consider a classical version of EFI called an EFID where both distributions
are just classical. These we can almost build from one-way puzzles, except that the construction
has a small amount of non-uniformity, and we don’t really know how to get rid of it.

Using one-way puzzles

But for other primitives, there are barriers towards constructing them from one-way puzzles, and
this is again because there is no efficient verification algorithm.

Using one-way puzzles

So…what if we added efficient verification? We still get a primitive weaker than one-way
functions, it is still implied by all QCCC cryptography….can we build more cryptographic
primitives? Specifically, I think there should be a way to get MACs or even signatures from these,
and the barriers we encounter are very classical in nature, you don’t really need a to know anything
about quantum computing to understand them.

Using one-way puzzles

Another intriguing observation: there seem to be deep connections between quantum advantage
and one-way puzzles. One connection is that the same conjectures that are used to show quantum
advantage in leading experiments also imply one-way puzzles

Quantum Advantage

Another intriguing observation: there seem to be deep connections between quantum advantage
and one-way puzzles. One connection is that the same conjectures that are used to show quantum
advantage in leading experiments also imply one-way puzzles

Quantum Advantage

Another intriguing observation: there seem to be deep connections between quantum advantage
and one-way puzzles. One connection is that the same conjectures that are used to show quantum
advantage in leading experiments also imply one-way puzzles

Quantum Advantage

Metacomplexity

Metacomplexity

Metacomplexity

Metacomplexity

Another, more abstract question is whether we can expand our repertoire of recipes.

Missing Recipes

There are two obvious types of hardness that we can imagine but don’t know how to construct
puzzles from

…
The main problem here is we don’t really have many primitives which fall into these categories, so
its challenging to think of the right definitions for these

Missing Recipes

In both cases, when we can’t construct puzzles we usually don’t know how to construct EFI either

Missing Recipes

