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A question which we all know the answer to

What is the minimal primitive for classical cryptography

Minimal Cryptographic Primitive?



Growing up we are told that the answer is one-way functions

Minimal Cryptographic Primitive?



But why do we say that one-way functions are minimal?

Minimal Cryptographic Primitive?



The primary reason is that one-way functions are implied by basically all classical cryptography

Minimal Cryptographic Primitive?



Which is to say that that OWFs are in some sense “at sea level” for classical crypto



In the sense that they are implied by almost all classical crypto



Now, that is also true for other primitives which are equivalent to OWFs like commitments



Or PRGs



But what sets one-way functions apart is that they are also very easy to build. They seem to very 
naturally capture the kind of hardness inherent in cryptographic constructions



Which lets us conclude that one way functions are the perfect minimal assumption on which to 
base cryptography



The problem with this claim though, as William kretschmer showed, this is only true for classical 
cryptography



If we think of one way functions as “sea level”, then



There are quantum cryptographic primitives which live “underwater”



Specifically, William and collaborators showed that certain kinds of quantum cryptography can be 
built from one way functions but do not in turn imply one-way functions



In fact, relative to certain oracles, these primitives can exist even if P=NP!



So, if quantum cryptography can be built from assumptions much weaker than one-way functions, 
this begs the question



What *now* is the minimal assumption required for quantum cryptography? Or in other words, is 
there… This is the question that Mark talked about  in the other room two years ago…

2 years ago in the other room



What *now* is the minimal assumption required for quantum cryptography? Or in other words, is 
there… This is the question that Mark talked about  in the other room two years ago…

2 years ago in the other room



And he gave a list of properties that were desirable for minimality

2 years ago in the other room



And compared all the leading candidates for minimal assumption

2 years ago in the other room



Along various axes, 

2 years ago in the other room



And basically concluded that none of them really fit the description

2 years ago in the other room



Two years later though, circa 2025, the picture is very different.



Because we have had these leading candidates for a while, and put them head to head, and after 
the dust has settled somewhat



It seems pretty clear that a primitive called an EFI pair is the minimal primitive for quantum 
cryptography.

Circa 2025



An EFI pair is just a pair of efficient distributions over quantum states

EFI



EFI



That are statistically far, but comp indistinguishable 

EFI



EFI pairs are pretty powerful, in that they can be used to build quantum commitments, which in 
turn can be used to build quantum MPC



So how did we get here, So what has changed in these two years? why do we say that EFI pairs are 
minimal.

How did we get here?



Well, we found out that EFI pairs are implied by almost everything in quantum cryptography, 
which we cannot really say about any of the other candidates. And it turns out that really that is 
the most important requirement for minimality.

How did we get here?



There is a catch of sorts though, which is that it is not really easy to build EFI pairs from most 
quantum crypto primitives, especially from less structured primitives.

How did we get here?



So even though they seem to be minimal, they don’t seem to capture cryptographic hardness as 
naturally as OWFs do. The main reason for this is that they are a decision primitive, and a lot of 
the hardness in quantum crypto is search hardness

How did we get here?



So this talk aims to answer two questions: 
First, how did we get here. How do we know that EFI pairs are implied by everything?
And secondly, is there a more natural way to understand the hardness in quantum cryptography

How do we know that EFI are implied by 
“everything”?



So this talk aims to answer two questions: 
First, how did we get here. How do we know that EFI pairs are implied by everything?
And secondly, is there a more natural way to understand the hardness in quantum cryptography

How do we know that EFI are implied by 
“everything”?

Is there a natural way to capture hardness?



We answer these questions via a different cryptographic primitive called a one-way puzzle. 

One-way puzzles



A one-way puzzle consists of an efficient quantum sampler that outputs a hard problem, which we 
call the puzzle, along with the key or the solution.

One-way puzzles



The sampler is a quantum machine, but the puzzle and its solution are both classical strings

Additionally, there is a verification process that checks whether puzzle and solution pairs are valid, 
where we have the guarantee that honestly generated pairs are always valid

One-way puzzles



This verifier, however, is crucially allowed to be inefficient!

One-way puzzles



The security we require from one-way puzzles is that for honestly sampled puzzles, it should be 
computationally hard to find a valid key.



One-way puzzles turn out to be really useful in understanding quantum hardness.



This is because, somewhat surprisingly, one-way puzzles are implied by most quantum 
cryptography



And one-way puzzles, in turn, can be used to build EFI pairs



Furthermore, while the construction of EFI pairs from one-way puzzles is complicated, We have 
developed techniques that mean constructing one-way puzzles from other cryptographic 
primitives tends to be very simple.



The focus of the rest of this talk will be on these different techniques we know can be used to 
build one-way puzzles, which we will think of as different recipes we can use to capture differing 
types of quantum hardness, and most primitives that you can think of will fall in one of these 
categories. Along the way we will see a number of important applications.

Essentially all constructions of one-way puzzles fall into one of three distinct recipes, and Eli is 
going to give an overview of each of them.

How to build?



As a quick preview, we will give recipes for three different kinds of cryptographic primitives. 
Classical secret, quantum output. Classical communication. And quantum input, classical output. 
This covers most cryptographic primitives you could think of, and typically when you encounter 
an object which falls into one of these categories, it will be easy to plug in the corresponding 
recipe and build one-way puzzles (and thus non-trivial quantum cryptography)

Recipes Overview



The first recipe follows along a technique known as shadow tomography. This technique applies 
to any cryptographic primitive with a classical input/secret and quantum output. In particular, the 
quantum output needs to consist of many copies of the same pure state (if you don’t know what 
that means, don’t worry about it).

Recipe #1: Shadow Tomography



There are a number of examples of such primitives which have been previously studied. One-way 
state generators, a “quantum output” version of a one-way function, fall under this umbrella. As 
do pseudorandom states and unitaries, as well as encryption schemes where the ciphertext is 
allowed to be quantum (under a suitable definition).

Recipe #1: Shadow Tomography



To visualize this, we will begin with some problem where it is easy to go from a classical key k to 
many copies of the quantum state phi_k, but it is hard to go back. We want to then construct a 
protocol where it is easy to go from a classical key k to some other _classical_ string S_k, but hard 
to go back.

Recipe #1: Shadow Tomography



And for now let’s just assume that this map is suitably “injective” (or statistically binding), 
although this isn’t actually necessary. That is, phi_k should commit to the string k.

Recipe #1: Shadow Tomography



One very obvious approach to doing this would be to have S_k be a classical description of phi_k.

Recipe #1: Shadow Tomography



But note that quantum states may in general have an exponential size classical description. In 
particular, there is no general efficient algorithm that can take many copies of a quantum state and 
produce an invertible classical description.

Any map from quantum states to classical strings must delete some information.

Recipe #1: Shadow Tomography



And this is where shadow tomography comes in. Classical shadow tomography is a procedure 
which maps a quantum states to a classical string where some statistical information _of your 
choice_ is preserved.

Recipe #1: Shadow Tomography



In particular, from phi_k, we can use classical shadow tomography to construct a classical shadow 
S_k which ALSO commits information theoretically to k.

That is, this technique (which we will not detail how it works) gives an efficient algorithm 
producing a classical shadow S_k from phi_k, as well as an inefficient map back to k from S_k.

Recipe #1: Shadow Tomography



This string S_k is called a classical shadow.

Recipe #1: Shadow Tomography



So, to build a one-way puzzle from a classical secret, quantum output problem, the recipe goes as 
follows.
The key will be the classical secret k.
The puzzle will be the classical shadow S_k produced from phi_k.

Recipe #1: Shadow Tomography



The inefficient verifier takes in a puzzle S_k and a key k’. It applies the inefficient map sending 
S_k back to k, and then compares k and k’. This is inefficient, but that is fine for our definition!

Recipe #1: Shadow Tomography



Since it is hard to go from |phi_k> back to k, and since we can easily build S_k from |phi_k>

Recipe #1: Shadow Tomography



It must also be hard to go from S_k back to k (that is, solve the puzzle!)

And so one-way state generators and friends can all be used to build one-way puzzles

Recipe #1: Shadow Tomography



The second recipe is a technique sometimes known as “universal extrapolation”.

Classically, if one-way functions do not exist, then there exists a “universal extrapolator” Ext 
which does the following. Given any classically samplable, correlated distributions X and Y.  The 
distribution (X,Y) is statistically close to (X, Ext(X)). That is, the universal extrapolator allows one 
to sample Y conditioned on the value of X for a randomly drawn x.

Recipe #2: Universal Extrapolation



From some perspective, this is actually the most common way to build one-way functions. Key 
exchange, commitments, and pretty much all cryptographic primitives are all easily broken by 
universal extrapolation, even if it is not immediately obvious how to build a one-way function.

Recipe #2: Universal Extrapolation



The hardness of universal extrapolation is essentially something called a “distributional one-way 
function”

Recipe #2: Universal Extrapolation



A second, very related task is something we call universal approximation (or probability 
estimation). If one-way functions don’t exist, then for all classically samplable distributions D, 
there exists an approximator Approx. For a randomly chosen x, Approx(x) will give a good 
multiplicative estimate of the probability that D outputs x.

So in short, no one way functions means we can do universal extrapolation and approximation. In 
other words, average-case conditional sampling and average-case estimation of output 
probabilities.

Recipe #2: Universal Extrapolation



And in fact the converse also holds.

Recipe #2: Universal Extrapolation



It turns out, that both of these results also hold for one-way puzzles in the quantum setting! The 
non-existence of one-way puzzles is equivalent to the ability to do universal extrapolation and 
approximation on _quantumly_ samplable distributions over classical strings. That is, the 
theorems are exactly the same, but now universal extrapolation works even when the sampler is 
quantum.

Recipe #2: Universal Extrapolation



It turns out, that both of these results also hold for one-way puzzles in the quantum setting! The 
non-existence of one-way puzzles is equivalent to the ability to do universal extrapolation and 
approximation on _quantumly_ samplable distributions over classical strings. That is, the 
theorems are exactly the same, but now universal extrapolation works even when the sampler is 
quantum.

Recipe #2: Universal Extrapolation



So how can we use this to build one-way puzzles? As an example, I will talk about a primitive you 
all know and love, key exchange, where classical Alice and classical Bob communicate classically, 
and then agree on a secret bit b. We know that we can build one-way functions from classical key 
exchange.

Recipe #2: Universal Extrapolation



But what happens when we restrict ourselves to the “quantum computation and classical 
communication setting”? That is, while we will QAlice and Qob to be quantum, but we require 
them to communicate classically.

Recipe #2: Universal Extrapolation



It turns out that so-called QCCC key exchange is very easy to break using universal extrapolation. 
We will simply let X be the transcript, and Y will be the agreed bit b.

Recipe #2: Universal Extrapolation



Now, universal extrapolation of the transcript will give the exact distribution of the output bit b!

Recipe #2: Universal Extrapolation



And so the universal extrapolation we get from no one-way puzzles breaks key exchange! And so 
key exchange can be used to build one-way puzzles.

Recipe #2: Universal Extrapolation



So what kinds of primitives will this approach work for? Really it works for practically _any_ 
cryptography with classical communication and quantum parties. 

Recipe #2: Universal Extrapolation



This is in fact much more powerful than just “QCCC versions of normal cryptography”, and it 
has a bunch of relatively surprising applications.

Recipe #2: Universal Extrapolation



One direct example is that this can be used to show that the existence of one-way puzzles is 
equivalent to the hardness of some metacomplexity problem on _quantumly samplable_ 
distributions.

Recipe #2: Universal Extrapolation



A very surprising other example of this recipe is that it is used to show that one-way puzzles are 
equivalent to some notion of quantum advantage! That is, one-way puzzles (with classical security) 
exist if and only if there exists proofs of quantumness with inefficient verification!

Recipe #2: Universal Extrapolation



This approach also lets us give concrete candidate constructions of one-way puzzles (and thus EFI 
and quantum crypto more generally) from quantum advantage style assumptions.

Recipe #2: Universal Extrapolation



Finally, and maybe the most obvious application, we get that essentially all cryptography with 
classical communication can be used to construct one-way puzzles.

Recipe #2: Universal Extrapolation



One final advantage of this equivalence is that it allows us to weaken the definition of one-way 
puzzles to a “distributional” notion. Recall that security of a one-way puzzle originally said that an 
adversary cannot find a key that verifies.

Recipe #2: Universal Extrapolation



But we could consider a distributional notion, which says that an adversary cannot sample from 
the conditional distribution on keys for a given puzzle. That is, the distribution of puzzles 
followed by adversary’s keys should be statistically far from the honest puzzle, key distribution.

Recipe #2: Universal Extrapolation



We call such a primitive a “distributional one-way puzzles” and it is essentially a hard instance of 
universal extrapolation. And so we have that dist owpz exist if and only if owpz exist.

Recipe #2: Universal Extrapolation



The nice thing about this alternative definition of one-way puzzles is that there we don’t need to 
deal about the weirdness of having an inefficient verifier, since there is no verifier in the first place!

Recipe #2: Universal Extrapolation



Our final recipe for constructing one-way puzzles will go through something called “state puzzles” 
It will work for any cryptographic primitive with a classical output, even if the secret is quantum.

Recipe #3: State Puzzles



This is probably the most general of the techniques, but a few examples of these are quantum 
money, encryption with a classical public key and quantum secret key, as well as 2 round key 
exchange with unauthenticated quantum communication.

Recipe #3: State Puzzles



This technique will build upon the previous one. In particular, we will begin with a primitive that 
maps a quantum state to a classical key such that it is easy to find the key from the state (or sample 
both together), but it is hard to recover the state from the key.

Recipe #3: State Puzzles



We will then want to build a hard instance of universal approximation. That is, some distribution 
D such that given a sample x, it is hard to approximate the probability that D outputs x.

Recipe #3: State Puzzles



In the worst-case setting, it is known how to do this using state synthesis techniques.

And in fact these techniques also translate to the average-case setting (with some work).

Recipe #3: State Puzzles



For ease of use, we abstract out this recipe into a primitive dubbed by Kabir as a state puzzle. A 
state puzzle is essentially a one way puzzle with a _quantum_ key.

Recipe #3: State Puzzles



Furthermore, we relax security to be the simplest possible thing. We simply require that no 
adversary on input a puzzle s can recover the _actual_ key state |phi_s>

Recipe #3: State Puzzles



Note that this is actually a falsifiable definition! Given an adversary, you can test whether it works 
yourself by comparing the adversary output to your stored key.

Recipe #3: State Puzzles



In a recent work, KT25 showed that state puzzles exist if and only if one-way puzzles exist, exactly 
by going through universal approximation

Recipe #3: State Puzzles



In a recent work, KT25 showed that state puzzles exist if and only if one-way puzzles exist, exactly 
by going through universal approximation

Recipe #3: State Puzzles



I will show a kind of cool, surprising, and very easy application. Note that if you have just a 
random string, this is cryptographically useless. There is no way to information theoretically build 
one-way functions. But, if you have a single random state, then it is possible to build one-way 
puzzles!

Recipe #3: State Puzzles



In particular, let |phi> be a random state on two registers A and B.

Recipe #3: State Puzzles



The state puzzle will act as follows. It will measure register B in the standard basis producing a 
string s as well as a residual state |phi_s> on register A.

Recipe #3: State Puzzles



Then, it will set the puzzle to be s, and the key to be phi_s. 

Recipe #3: State Puzzles



It is information-theoretically impossible to construct phi_s from s and phi in polynomial time, 
and so this is a state puzzle!

Recipe #3: State Puzzles



And so this gives a construction of state-puzzles (and thus one-way puzzles) from just a single 
random state floating in the air.

Recipe #3: State Puzzles



And this technique also works for a bunch of important cryptographic primitives (like quantum 
money or 2-round key distribution)

Recipe #3: State Puzzles



To recap, we gave three recipes for three different types of protocols.
The first recipe is shadow tomography, which works when there are classical secrets and (many) 
quantum outputs.

The second is universal extrapolation/approximation, which works for anything with classical 
communication.

And the last is state puzzles, which works when there are quantum secrets and classical outputs.

Recipes Recap



Note that all three of these techniques are solvable in the worst-case by an algorithm in the 
counting complexity class #P (a complete problem is counting the number of satisfying 
assignments of a SAT formulat)

Recipes Recap



This leads to the following heuristic, for which I know no counterexamples. If a cryptographic 
object can be broken in P^#P, then it implies one-way puzzles.

Recipes Recap



As a final view, we can divide crypto up into three categories, crypto broken in NP, broken in #P, 
and crypto we just don’t know how to break.

Central Primitives



Each of these worlds has a minimal primitive, OWF for NP, OWPz for #P, and EFI for the rest

Central Primitives



Open Questions



The first, glaring open problem is how OWPuzz relate to EFI. We know that one-way puzzles are 
broken by #P oracles, and we don’t know of any classical oracle that can break EFI pairs

Connections to EFI



Connections to EFI



And yet, we have no separations between EFI pairs and one-way puzzles. The best we have is a 
separation where we are restricted to making a single query to the oracle, which doesn’t actually 
give a black box separation! 

EFI pairs are the main candidate for showing that the unitary synthesis problem is hard relative to 
classical oracles, and a prerequisite for that is to separate from one way puzzles. 

The other possibility is that we can actually construct one-way puzzles from EFI, which would 
really simplify the picture of quantum minimality, and actually such a construction wouldn’t even 
contradict the unitary synthesis conjecture.

Connections to EFI



An easier thing to try is building one-way puzzles from single copy PRS, which seem stronger than 
EFI, but we don’t know how to build anything useful from them, other than EFI

Connections to EFI



The second question is about using one-way puzzles. OWPuzz are defined with the double edged 
sword of NO EFF VER.  

Using one-way puzzles



This is good because it lets us build them from very very weak assumptions, maybe even as weak 
as the worst case quantum hardness of #P.

Using one-way puzzles



The downside is this makes it harder to build other primitives from it

Using one-way puzzles



The known results are that one-way puzzles imply the hardness of approximating K complexity, 
they imply IV-PoQ, they imply EFI, and they imply everything else implied by EFI

Using one-way puzzles



A natural thing to try to build from OWP is a classical communication cryptography

Using one-way puzzles



Specifically, we can consider a classical version of EFI called an EFID where both distributions 
are just classical. These we can almost build from one-way puzzles, except that the construction 
has a small amount of non-uniformity, and we don’t really know how to get rid of it.

Using one-way puzzles



But for other primitives, there are barriers towards constructing them from one-way puzzles, and 
this is again because there is no efficient verification algorithm.

Using one-way puzzles



So…what if we added efficient verification? We still get a primitive weaker than one-way 
functions, it is still implied by all QCCC cryptography….can we build more cryptographic 
primitives? Specifically, I think there should be a way to get MACs or even signatures from these, 
and the barriers we encounter are very classical in nature, you don’t really need a to know anything 
about quantum computing to understand them.

Using one-way puzzles



Another intriguing observation: there seem to be deep connections between quantum advantage 
and one-way puzzles. One connection is that the same conjectures that are used to show quantum 
advantage in leading experiments also imply one-way puzzles

Quantum Advantage



Another intriguing observation: there seem to be deep connections between quantum advantage 
and one-way puzzles. One connection is that the same conjectures that are used to show quantum 
advantage in leading experiments also imply one-way puzzles

Quantum Advantage



Another intriguing observation: there seem to be deep connections between quantum advantage 
and one-way puzzles. One connection is that the same conjectures that are used to show quantum 
advantage in leading experiments also imply one-way puzzles

Quantum Advantage



Metacomplexity



Metacomplexity



Metacomplexity



Metacomplexity



Another, more abstract question is whether we can expand our repertoire  of recipes.

Missing Recipes



There are two obvious types of hardness that we can imagine but don’t know how to construct 
puzzles from

…
The main problem here is we don’t really have many primitives which fall into these categories, so 
its challenging to think of the right definitions for these

Missing Recipes



In both cases, when we can’t construct puzzles we usually don’t know how to construct EFI either

Missing Recipes


