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Complexity  Cryptography II:∩
Cryptography without One-Way Functions
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Those who cannot prove… assume!

The limits of computation are poorly understood.


It is hard to prove that a task cannot be performed by efficient adversaries.


But cryptography is all about claiming that certain tasks cannot be performed 
by efficient adversaries.


So we must make assumptions.



What if our assumptions are false?
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Goal: Make the mildest possible assumptions

Classical 
Cryptography

Digital 
Signatures PRGs

SKE
Commitments

Requires 
 𝖯 ≠ 𝖭𝖯

Minimal Assumption

One-Way Functions



Algorithmica: 
P=NP

Heuristica: 
avgNP∈P

Pessiland: 
P!=(avg)NP, no OWF

Minicrypt: 
OWF, no PKE

Cryptomania: 
OWF, PKE, MPC…

Image courtesy: Quanta magazine



A Quantum Dream: Crypto Without Assumptions

What about other primitives?

Zero-Knowledge
Signatures

Public-Key EncryptionCommitments
Secure Computation

Coin-tossing

 Quantum Key Distribution unconditionally secure against 
unbounded adversaries


[Bennett-Brassard’84]

∃
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30 years ago…

• Commitments secure against unbounded adversaries were believed to exist

  See e.g., [Brassard-Crepeau-Josza-Langlois’93]


• Quantum MPC using commitments against unbounded adversaries

          Proposed in [Crepeau-Kilian’88], proven secure in [Mayers-Salvail’94, Yao’95]  


• Years later: proof that commitments against unbounded adversaries are 
impossible!  
          In independent works [Mayers’97], [Lo-Chau’97] 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No escape from computational assumptions?

Cannot achieve security against unbounded adversaries for most 
cryptographic primitives


Must consider computationally bounded adversaries  
 
 

But we can weaken the assumptions required! 

☹︎

☺︎
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Escaping Cryptomania

One-Way Functions  Commitments  Secure MPC 
[Bartusek-Coladangelo-Khurana-Ma’21, Grilo-Lin-Song-Vaikuntanathan’21, Ananth-Qian-

Yuen’22]

→ →

One-Way Functions  Public Key Encryption* 
[Barooti-Grilo-HugueninDumittan-Malavolta-Vu-Walter’24, Kitagawa-Morimae-Nishimaki-

Yamakawa’24] 

→

*with quantum public keys and ciphertexts

Both impossible in the classical setting! [Impagliazzo-Rudich’89]

MPC and PKE from One-Way Functions



Can we base quantum cryptography on 
assumptions even weaker than one-way 
functions?



Escaping Minicrypt
Pseudorandom States

𝖦𝖾𝗇(k) |ψk⟩
(efficient)
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|ψk⟩⊗poly(n) ≈c |ϕ⟩⊗poly(n)

|ϕ⟩ k
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Can be constructed from one-way functions [Ji-Liu-Song’18]

Relative to a quantum oracle, pseudorandom states can exist even if 

 [Kretschmer’21] 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Pseudorandom states are useful! [AQY’22, MY’22]

Using pseudorandom states we can define distributions:

•  : Output a (Haar) random quantum state


•  : Output a pseudorandom quantum state


This gives a pair of distributions that are

• Efficient to sample from

• Statistically Far

• Computationally Indistinguishable


AKA an EFI pair, known to be equivalent to (quantum) bit commitments 
[BCQ’22, Yan’22]

𝒟0

𝒟1
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Cryptography even if  ! 𝖯 = 𝖭𝖯

Relative to a quantum oracle, commitments can exist even if  
[Kretschmer’21]


Relative to a classical oracle, commitments can exist even if  
[KQST’23, KQT’24]


Conjectured that commitments can exist relative to any classical oracle!
[LMW’24]


Recall that in the quantum world, commitments are sufficient for MPC! 

𝖡𝖰𝖯 = 𝖰𝖬𝖠

𝖯 = 𝖭𝖯





[https://
sattath.github.io/
microcrypt-zoo/]



How can we understand quantum 
cryptography without one-way functions? 
 
What questions can we ask?
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One-Wayness in a Quantum World

Classically, one-way functions capture the hardness inherent in cryptographic 
search problems in natural way.


Additional desirable properties: robustness, combiners, universal 
constructions, etc. 

Is there a quantum equivalent? 



Quantumly computable 

s.t. inverting  is hard, 

w.h.p over uniformly chosen 

f
f(x)

x

One-Wayness in a Quantum World

Quantum One-Way 
Function

Can exist even if   
Cannot exist if 

𝖯 = 𝖭𝖯
𝖡𝖰𝖯 = 𝖰𝖬𝖠



One-Wayness in a Quantum World

Quantum One-Way 
Function One-Way States

(Quantum) efficient algorithm 
 


s.t. inverting  is hard
x → |ψx⟩

|ψx⟩⊗t

Digital signatures, encryption 
schemes, etc. where the hard 

task is to find a classical secret 
[Morimae-Yamakawa’22]



One-Wayness in a Quantum World

Quantum One-Way 
Function One-Way States State Puzzles

(Quantum) efficient algorithm  
s.t. hard to output  given 

→ (s, |ψs⟩)
|ψs⟩ s

Quantum Money, 
Quantum Secret Key 

Primitives
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Quantum One-Way 
Function One-Way States State Puzzles One-Way Puzzles



One-Way Puzzles [Khurana-T. 24]

𝖲𝖺𝗆𝗉(1n) (x, y) ∈ ℛ

Given , computationally infeasible to find  s.t.  
 

Note that  does not need to be an  relation (or even efficient)!

y x′￼ (x′￼, y) ∈ ℛ

ℛ 𝖭𝖯

Efficient quantum process sampling problems along with their solutions.

(efficient)
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Do we fully understand one-wayness?

We have considered the hardness of 


• Classical problems with classical solutions (One-way puzzles)


• Quantum problems with classical solutions (One-way states)


• Classical problems with quantum solutions (State Puzzles)


What about quantum problems with quantum solutions?  
(Some attempts, see [QRZ’25])
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1. Is there a quantum “minimal” primitive/analogue of one-way functions? 

2. Can we build cryptosystems from concrete mathematical problems that are 
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quantum cryptography have with (traditional) complexity theory?
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The Scarcity of Concrete Instantiations

Microcrypt primitives are implied by (post-quantum) one-way functions.


Separations from OWFs involve oracle constructions; unknown how to 
instantiate in the standard model without OWFs. 


Proposed Candidates:


For random quantum circuit ,  is conjectured to be pseudorandom 
[AQY’22][FGSY’25]


For random IQP circuit ,  is conjectured to be pseudorandom 
[BHHP’24]

C C |0⟩

C C |0⟩



One-Way 
Functions

Microcrypt 
Primitives

?

LWENew 
Candidates



A Ground-Up 
Approach:
(1) Look for sources of hardness 

beyond the polynomial 
hierarchy.


(2) Build cryptography from these 
new sources.

𝖯#𝖯

𝖡𝖰𝖯

𝖯𝖲𝖯𝖠𝖢𝖤

𝖯𝖧

𝖯

𝖭𝖯
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The Complexity of Counting

The class  captures the complexity of finding the number of satisfying 
assignments to a boolean formula.


   [Toda’s Theorem]


But solving -complete problems is believed to be beyond the power of  
(or even )


Several -complete problems admit worst-case to average-case reductions! 

#𝖯

𝖭𝖯 ⊆ 𝖯𝖧 ⊆ 𝖯#𝖯

#𝖯 𝖯𝖧
𝖡𝖰𝖯𝖭𝖯

#𝖯



Dream Goal: Build Crypto from a #P-hard problem 
 

  Quantum Cryptography exists!𝖯#𝖯 ⊈ 𝖡𝖰𝖯 ⟹

Cryptography from an extremely mild worst-case assumption.


Much weaker than even assuming NP is hard!



Our Results

Main Theorem (informal) [Khurana-T’25] 
 
Assume any one (from a set of) quantum advantage conjectures:


 
   One-Way Puzzles exist
#𝖯 ⊈ 𝖡𝖰𝖯 ⟺



Building One-Way Puzzles

One-way puzzles are invertible using a #P oracle [CGGHLP'24]


They can exist only if  


Can we build one-way puzzles assuming (only) that ?

𝖯#𝖯 ⊈ 𝖡𝖰𝖯

𝖯#𝖯 ⊈ 𝖡𝖰𝖯



Permanants are -hard on average#𝖯

Permanant of a matrix  :=  


Computing the permanent is -hard on average 

Can we build one-way puzzles from the hardness of computing permanents?

A 𝖯𝖾𝗋𝗆(A) = ∑
σ∈Sn

n

∏
i=1

ai,σi

#𝖯
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Puzzles from Permanents: First Attempt

Sampler must efficiently sample  such that given  it is hard to find . 

Can we set  = ? 

We can efficiently sample  such that finding  is hard.


Don’t know how to sample 

(x, y) y x

(x, y) (𝖯𝖾𝗋𝗆(A), A)

A 𝖯𝖾𝗋𝗆(A)

(𝖯𝖾𝗋𝗆(A), A)



An insight from quantum advantage

Quantum circuits can efficiently sample from a distribution D such that  
probabilities of outputs encode permanents of complex matrices

[SB09, BJS11, AA11, BMS16, FM17, BIS+18, BFNV19, KMM21, BFLL21, Kro22, Mov23, ZVBL23]
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An insight from quantum advantage

Quantum circuits can efficiently sample from a distribution D such that  
probabilities of outputs encode permanents of complex matrices 

Permanents hard to compute   
probabilities of outcomes are hard to compute 

Can we use this insight to build puzzles?

⟹

[SB09, BJS11, AA11, BMS16, FM17, BIS+18, BFNV19, KMM21, BFLL21, Kro22, Mov23, ZVBL23]
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z ← Pr [z]

(Pr [z] z)



Puzzles from #P-hardness of computing D ?Pr [z]

For D, it is hard to compute D  


Can we set our puzzle output to be D , ?


Even this is hard to sample! 
 

 All we can do is sample  D efficiently.

z ← Pr [z]

(Pr [z] z)

z ←



Distributional One-Way Puzzles

(X, Y)

Capture hardness of distributional inversion

Given , computationally infeasible to sample    
(unto  statistical distance)

y ∼ Y x ∼ X |y
1/𝗉𝗈𝗅𝗒(n)

𝖲𝖺𝗆𝗉(1n)
(efficient)



Hardness Amplification for One-Way Puzzles 

   Prior work [Chung-Goldin-Gray'24]  
 
   Distributional one-way puzzles  one-way puzzles⟺
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Candidate Distributional One-way Puzzle: D 

(1) Sample D, where WLOG  is  bits long.


(2) Sample 


(3) Set  and 


(4) Output 

𝗉𝗎𝗓𝗓

z ← z n

i ← [n]

x := zi y := z1z2…zi−1

(x, y) = (zi, z1z2…zi−1)

Distributional one-way puzzles from #P-hardness of computing DPr [z]



Hope: Any adversary that distributionally inverts the puzzle can be used to 
compute D , which will let us compute permanents of matrices ( -hard!)Pr [z] #𝖯

Candidate Distributional One-way Puzzle: D 

(1) Sample D, where WLOG  is  bits long.
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(3) Set  and 
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𝗉𝗎𝗓𝗓

z ← z n

i ← [n]

x := zi y := z1z2…zi−1
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Distributional one-way puzzles from #P-hardness of computing DPr [z]
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For any string , note that D  = D D D

A (z1z2…zi−1)
zi |z1z2…zi−1

z Pr [z] Pr [z1] ⋅ Pr [z2 |z1] ⋅ … ⋅ Pr
[zn |z1z2…zn−1]



Estimating probabilities bit by bit

Suppose adversary  perfectly inverts the puzzle, i.e. on input  
samples perfectly from the induced distribution 


For any string , note that D  = D D D




We can approximate each term of form D  by repeatedly 
calling the adversary on input  and counting the frequency of 
each bit in the output.

A (z1z2…zi−1)
zi |z1z2…zi−1

z Pr [z] Pr [z1] ⋅ Pr [z2 |z1] ⋅ … ⋅ Pr
[zn |z1z2…zn−1]

Pr [zi |z1z2…zi−1]
(z1z2…zi−1)
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The estimate we obtain will have small error only if each of the terms 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Dealing with “bad” strings

The estimate we obtain will have small error only if each of the terms 

D  is not too small.


However, note that if D  is small then D  must also be 
small.


Such “bad”  can therefore only arise with small probability.

Pr [zi |z1z2…zi−1]

Pr [zi |z1z2…zi−1] Pr [z]

z



Dealing with “bad” strings

The estimate we obtain will have small error only if each of the terms  

D  is not too small.


However, note that if D  is small then D  must also be 
small.


Such “bad”  can therefore only arise with small probability.


Full proof requires dealing with adversaries that make errors and only 
succeed on infinitely many input lengths.

Pr [zi |z1z2…zi−1]

Pr [zi |z1z2…zi−1] Pr [z]

z



Limitations

1. We only obtain an approximation for D 


2. We only get a good approximation with  probability over 
sampling of 


Pr [z]

1 − 1/𝗉𝗈𝗅𝗒(n)
z



Limitations

1. We only obtain an approximation for D 


2. We only get a good approximation with  probability over 
sampling of  
 

Is this enough to show security?

Pr [z]

1 − 1/𝗉𝗈𝗅𝗒(n)
z



Formalizing Probability Approximation

Probability Approximation: For a (quantum) efficiently sampleable 
distribution D, probability approximation is defined as:


Given D, compute a  multiplicative error approximation of 


D  with probability  over choice of 
x ← 1/𝗉𝗈𝗅𝗒(n)

Pr [x] 1 − 1/𝗉𝗈𝗅𝗒(n) x



Formalizing Probability Approximation

Probability Approximation: For a (quantum) efficiently sampleable 
distribution D, probability approximation is defined as:


Given D, compute a  multiplicative error approximation of 


D  with probability  over choice of 
x ← 1/𝗉𝗈𝗅𝗒(n)

Pr [x] 1 − 1/𝗉𝗈𝗅𝗒(n) x

Efficient algorithm that distributionally inverts D  


Efficient algorithm for probability approximation


𝗉𝗎𝗓𝗓 ⟹



Puzzles from hardness of probability approximation

Theorem 1 [Khurana-T’25] 

Probability approximation is hard for efficient quantum adversaries  

One-Way Puzzles exist

⟺

Probability Approximation: For a (quantum) efficiently sampleable 
distribution D, probability approximation is defined as:


Given D, compute a  multiplicative error approximation of 


D  with probability  over choice of 
x ← 1/𝗉𝗈𝗅𝗒(n)

Pr [x] 1 − 1/𝗉𝗈𝗅𝗒(n) x



How hard is Probability Approximation?



The literature on quantum advantage conjectures that (for specific choices of 
experiment D):

How hard is Probability Approximation?

ConjectureD : Probability approximation for D is -hard#𝖯

D  {BosonSampling, Random Circuit Sampling, IQP Sampling, etc.}∈

[SB09, BJS11, AA11, BMS16, FM17, BIS+18, BFNV19, KMM21, BFLL21, Kro22, Mov23, ZVBL23]



The literature on quantum advantage conjectures that (for specific choices of 
experiment D):

How hard is Probability Approximation?

ConjectureD  Probability approximation for D is -hard⟹ #𝖯

BosonSampling — Permanents of random matrices with  Gaussian 
entries are #P-hard to approximate on average [Aaronson-Arkhipov’11]


Random Circuit Sampling — Output probabilities of Random Quantum 
Circuits are #P-hard to approximate on average [Boixo et.al.’18….., 
Movassagh 23,...]


IQP [Bremner-Montanaro-Shepherd’14….]

𝒩(0,1)



(Non Trivial)

Conjectures imply impossibility of classical simulation

ConjectureD + (𝖡𝖯𝖯𝖭𝖯 ≠ #𝖯)

D cannot be classically simulated



Theorem 1 [Khurana-T’25] 

Probability approximation is hard for efficient quantum adversaries  
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ConjectureD : Probability approximation for D is -hard #𝖯

Theorem 1 [Khurana-T’25] 

Probability approximation is hard for efficient quantum adversaries  

One-Way Puzzles exist

⟺



ConjectureD : Probability approximation for D is -hard#𝖯

Corollary: Assuming ConjectureD  
 implies the existence of one-way puzzles.
𝖯#𝖯 ⊈ 𝖡𝖰𝖯

Theorem 1 [Khurana-T’25] 

Probability approximation is hard for efficient quantum adversaries  

One-Way Puzzles exist

⟺
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⟹
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Ruling out One-Way functions

Suppose there exists function  such that :f

where security is established via efficient (quantum) black box reduction , i.e. R

 inverts      performs probability approximation for DA f ⟹ RA

Probability approximation for D is hard for efficient quantum adversaries 
 

 is a secure one way function

⟹

f
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Ruling out One-Way functions

But any one-way function  can be inverted using an  oracle.


Therefore,  can perform probability approximation for D.

f 𝖭𝖯

R𝖭𝖯



Ruling out One-Way functions

But any one-way function  can be inverted using an  oracle.


Therefore,  can perform probability approximation for D.


But (by conjectures for BosonSampling, etc.) probability approximation for D 
is -hard!


 (extremely unlikely!)

f 𝖭𝖯

R𝖭𝖯

#𝖯

⟹ 𝖯#𝖯 ⊆ 𝖡𝖰𝖯𝖭𝖯
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Consequences

One-Way 
Puzzles

Commitments, 
MPC

LWE
Assumption: Probability 

approximation for D is hard for QPT

D  {BosonSampling, Random Circuit Sampling, IQP Sampling, etc.}∈

𝖡𝖰𝖯 ≠ 𝖯#𝖯

[Assuming Quantum 
Advantage Conjectures]



Understanding Microcrypt: Some Lenses

1. Is there a quantum “minimal” primitive/analogue of one-way functions? 

2. Can we build cryptosystems from concrete mathematical problems that are 
harder than inverting one-way functions? 

3. Classical cryptography cannot exist if P=NP. What connections does 
quantum cryptography have with (traditional) complexity theory?



Open questions:

1. Do commitments imply one-way puzzles? Are they separated? 

2. Can one-way puzzles imply interesting primitives not known to be implied by 
commitments? 

• Metacomplexity characterization of one-way puzzles [CGGH25, HM25] 
• One-way puzzles imply (inefficiently verifiable) proofs of quantumness [MSY25] 

3. Our new assumptions only get us one-way puzzles. What about 
pseudorandom states, PKE, signatures, etc?


4. Can we use even weaker assumptions to build commitments?



Thank You!
(Questions?)


